296 research outputs found

    06311 Executive Summary -- Sensor Data and Information Fusion in Computer Vision and Medicine

    Get PDF
    Today many technical systems are equipped with multiple sensors and information sources, like cameras, ultrasound sensors or web data bases. It is no problem to generate an exorbitantly large amount of data, but it is mostly unsolved how to take advantage of the expectation that the collected data provide more information than the sum of its parts. The design and analysis of algorithms for sensor data and information acquisition and fusion as well as the usage in a differentiated application field was the major focus of the Seminar held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. 24 researchers, practitioners, and application experts from different areas met to summarize the current state-of-the-art technology in data and information fusion, to discuss current research problems in fusion, and to envision future demands of this challenging research field. The considered application scenarios for data and information fusion were in the fields of computer vision and medicine

    06311 Abstracts Collection -- Sensor Data and Information Fusion in Computer Vision and Medicine

    Get PDF
    From 30.07.06 to 04.08.06, the Dagstuhl Seminar 06311 ``Sensor Data and Information Fusion in Computer Vision and Medicine\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. Sensor data fusion is of increasing importance for many research fields and applications. Multi-modal imaging is routine in medicine, and in robitics it is common to use multi-sensor data fusion. During the seminar, researchers and application experts working in the field of sensor data fusion presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. The second part briefly summarizes the contributions

    Binary tomography by iterating linear programs

    Get PDF
    A novel approach to the reconstruction problem of binary tomography from a small number of X-ray projections is presented. Based on our previous work, we adopt a linear programming relaxation of this combinatorial problem which includes an objective function for the reconstruction, the approximation of a smoothness prior enforcing spatially homogeneous solutions, and the projection constraints. We supplement this problem with an unbiased concave functional in order to gradually enforce binary minimizers. Application of a primal-dual subgradient iteration for optimizing this enlarged problem amounts to solve a sequence of linear programs, where the objective function changes in each step, yielding a sequence of solutions which provably converges

    Deconvolution-Based CT and MR Brain Perfusion Measurement: Theoretical Model Revisited and Practical Implementation Details

    Get PDF
    Deconvolution-based analysis of CT and MR brain perfusion data is widely used in clinical practice and it is still a topic of ongoing research activities. In this paper, we present a comprehensive derivation and explanation of the underlying physiological model for intravascular tracer systems. We also discuss practical details that are needed to properly implement algorithms for perfusion analysis. Our description of the practical computer implementation is focused on the most frequently employed algebraic deconvolution methods based on the singular value decomposition. In particular, we further discuss the need for regularization in order to obtain physiologically reasonable results. We include an overview of relevant preprocessing steps and provide numerous references to the literature. We cover both CT and MR brain perfusion imaging in this paper because they share many common aspects. The combination of both the theoretical as well as the practical aspects of perfusion analysis explicitly emphasizes the simplifications to the underlying physiological model that are necessary in order to apply it to measured data acquired with current CT and MR scanners

    Measurement of Individual Changes in the Performance of Human Stereoscopic Vision for Disparities at the Limits of the Zone of Comfortable Viewing

    Get PDF
    International audience3D displays enable immersive visual impressions but the impact on the human perception still is not fully understood. Viewing conditions like the convergence-accommodation (C-A) conflict have an unnatural influence on the visual system and might even lead to visual discomfort. As visual perception is individual we assumed the impact of simulated 3D content on the visual system to be as well. In this study we aimed to analyze the stereoscopic visual performance of 17 subjects for disparities inside and outside the in literature defined zone of comfortable viewing to provide an individual evaluation of the impact of increased disparities on the performance of the visual system. Stereoscopic stimuli were presented in a four-alternative forced choice (4AFC) setup in different disparities. The response times as well as the correct decision rates indicated the performance of stereoscopic vision. The results showed that increased disparities lead to a decline in performance. Further, the impact of the presented disparities is dependent on the difficulty of the task. The decline of performance as well as the deciding disparities for the decline were subject dependent

    Piezoelectric-transducer-based miniature catheter for ultrahigh-speed endoscopic optical coherence tomography

    Get PDF
    We developed a piezoelectric-transducer- (PZT) based miniature catheter with an outer diameter of 3.5 mm for ultrahigh-speed endoscopic optical coherence tomography (OCT). A miniaturized PZT bender actuates a fiber and the beam is scanned through a GRIN lens and micro-prism to provide high-speed, side-viewing capability. The probe optics can be pulled back over a long distance to acquire three-dimensional (3D) data sets covering a large area. Imaging is performed with 11 μm axial resolution in air (8 μm in tissue) and 20 μm transverse resolution, at 960 frames per second with a Fourier domain mode-locked laser operating at 480 kHz axial scan rate. Using a high-speed data acquisition system, endoscopic OCT imaging of the rabbit esophagus and colon in vivo and human colon specimens ex vivo is demonstrated

    Efficient 2D filtering for cone-beam VOI reconstruction

    Full text link
    Abstract—In some clinical applications, e.g., examination of deployed stents or coils during the intervention, only a small portion of the patient may be of diagnostic interest. For the sake of dose reduction to the patient, it is practicable to deploy a collimator to block radiation dose outside volume of interest (VOI). The resulting truncation, however, particularly in lateral direction, poses a challenge to the conventional reconstruction methods. The Approximated Truncation Robust Algorithm for Computed Tomography (ATRACT) is able to reconstruct images without the use of any explicit extrapolation schemes, even for highly truncated data. It is based on a decomposition of the standard ramp-filter into a local and a non-local filtering step, where the local step coincides with the two-dimensional (2D) Laplace operator and the non-local step is a 2D Radon-based filtering. In a practical implementation, the Radon-based filtering is not computationally efficient. In this paper, we present an improvement of the original ATRACT algorithm. The 2D Radon-based filtering step in the original algorithm is replaced by an analytical 2D convolution, resulting in a significant improvement in computational performance while retaining the image quality benefits of the VOI algorithm. Index Terms—Image reconstruction, volume of interest, trun-cation correction, dose reduction I

    Optical coherence tomography angiography of optic nerve head and parafovea in multiple sclerosis

    Get PDF
    Aims To investigate swept-source optical coherence tomography (OCT) angiography in the optic nerve head (ONH) and parafoveal regions in patients with multiple sclerosis (MS). Methods Fifty-two MS eyes and 21 healthy control (HC) eyes were included. There were two MS subgroups: 38 MS eyes without an optic neuritis (ON) history (MS −ON), and 14 MS eyes with an ON history (MS +ON). The OCT images were captured by high-speed 1050 nm swept-source OCT. The ONH flow index (FI) and parafoveal FI were quantified from OCT angiograms. Results The mean ONH FI was 0.160±0.010 for the HC group, 0.156±0.017 for the MS−ON group, and 0.140±0.020 for the MS+ON group. The ONH FI of the MS+ON group was reduced by 12.5% compared to HC eyes (p=0.004). A higher percentage of MS+ON eyes had abnormal ONH FI compared to HC patients (43% vs 5%, p=0.01). Mean parafoveal FIs were 0.126±0.007, 0.127±0.010, and 0.129±0.005 for the HC, MS−ON, and MS +ON groups, respectively, and did not differ significantly among them. The coefficient of variation (CV) of intravisit repeatability and intervisit reproducibility were 1.03% and 4.53% for ONH FI, and 1.65% and 3.55% for parafoveal FI. Conclusions Based on OCT angiography, the FI measurement is feasible, highly repeatable and reproducible, and it is suitable for clinical measurement of ONH and parafoveal perfusion. The ONH FI may be useful in detecting damage from ON and quantifying its severity.National Institutes of Health (U.S.) (Clinical and Translational Science Award Grant UL1TR000128)National Institutes of Health (U.S.) (Grant R01 EY023285)National Institutes of Health (U.S.) (Grant R01 EY013516)National Institutes of Health (U.S.) (Grant R01-EY11289)National Institutes of Health (U.S.) (Grant P30EY010572)United States. Air Force Office of Scientific Research (FA9550-10-1-0551)United States. Air Force Office of Scientific Research (FA9550-12-1-0499)German Research Foundation (DFG-HO-1791/11-1)Research to Prevent Blindness, Inc. (United States
    corecore